Все мы знаем, что горение — это процесс, который происходит в результате взаимодействия вещества, способного к горению (горючего), и окислителя (кислорода воздуха, закиси азота, хлора и т.п.), но как происходит это на солнце, где нет таких веществ?
Планета Земля находится в галактике Млечный Путь и насчитывает более 100 миллиардов звезд и одна из них – наше Солнце.
Из-за протекающих ядерных реакций в недрах звезды температура поверхности Солнца достигает 5500 градусов Цельсия.
Наблюдаемые на солнечной поверхности темные пятна могут в несколько раз превосходить размер нашей планеты, свидетельствуя об активности звезды, которая проходит естественный цикл каждые 11 лет и оказывает влияние на космическую погоду. Все потому, что темные пятна приводят к солнечным вспышкам и коронарным выбросам из-за которых в окружающее пространство попадают облака из магнитных частиц.
Астрономы иногда говорят, что звезда — самый простой объект во Вселенной. Что может быть примитивнее газового шара? Это не чёрные дыры и не загадочная тёмная энергия. Но в действительности ближайшая к нам звезда, Солнце, до сих пор хранит немало тайн.
Упрощенное описание этой звезды как шара, состоящего из сжатого, раскалённого, ионизированного газа, даёт несколько искаженное представление о внутренней структуре Солнца. Ничего подобного тому, что мы обычно понимаем под «газом», в недрах светила нет. Сердцевина звезды представляет собой твёрдое — даже сверхтвёрдое! — вещество, аналогов которому в мире планет не найти. В «холодной» твёрдой материи молекулы сцеплены электронными оболочками.
Твёрдая сердцевина занимает половину объёма Солнца и условно делится на две не имеющие чёткого разграничения зоны: ядро, имеющее радиус 20-25% солнечного (только в этой зоне давление достаточно для протекания термоядерных реакций), и зону лучистого переноса. Через последнюю родившиеся в ядре фотоны медленно и мучительно протискиваются к границе конвективной зоны — аналогу мантии планет.
Материя солнечной мантии представляет собой столь же экзотическую субстанцию, как и «чёрный водород» недр. Её можно назвать «жидким пламенем» — причём термин окажется удивительно точным. Ведь пламя — струи раскалённого, ионизированного газа. В недрах Солнца он просто сжат до состояния жидкости — в глубинах плотной и вязкой, как ртуть, выше же подобной расплавленному камню.
Нагретый жаром ядра «жидкий огонь» течёт вверх, навстречу ему опускаются охлаждённые массы. Это движение упорядочено по колоннам конвекции — шестигранным призмам шириной 20 тысяч и высотой 200 тысяч километров. У поверхности конвективная зона переходит в фотосферу — трёхсоткилометровую толщу уже вполне обычного по своим физическим свойствам жидкого водорода. Это — зона охлаждения солнечной материи. Выделившаяся в твёрдом ядре энергия уносится излучением. Обычно указывается, что температура фотосферы Солнца — 5800 К. В действительности же поверхность Солнца нагрета лишь до 4000 градусов, но сквозь верхние слои водорода пробивается свет от глубинных, куда более раскалённых.
В ядре Солнца при огромном давлении и температуре идут реакции ядерного синтеза, при которых два атома водорода превращаются в один атом гелия. Небольшая разница в массах элементов при слиянии выделяется в виде энергии, в том числе света. Не сразу этот свет достигает не только нас с вами, но и поверхности звезды.
Если смотреть на Солнце, то кажется, будто оно горит. На самом деле, это нагретый до состояния плазмы газ выделяет энергию, в том числе и свет, в пространство.
По мере превращение водорода в гелий ядро звезды уплотняется. Это приводит к росту давления и ускоряет термоядерные реакции. С возрастом, расходуя горючее, звезда не тускнеет, а разгорается всё сильнее. В случае Солнца это означает увеличение светимости на 10% за миллиард лет. И даже дополнительные 10% будут для Земли лишними — выживут только термофильные организмы в закипающих у поверхности океанах. А ещё через 2,5 миллиарда лет, полностью потеряв воду, наша планета превратится в подобие Венеры.
Зато от увеличения светимости Солнца в выигрыше окажется Марс. Через миллиард лет на Марсе растают ледники, потекут реки и появится плотная атмосфера. Это будет засушливый, но вполне пригодный для жизни мир. Последними эстафету примут спутники Сатурна — когда лучи умирающего Солнца на короткое время растопят льды.
Через 7 миллиардов лет в сжимающемся ядре Солнца закончится водород. Но температура в недрах светила к этому времени уже будет так велика, что реакция синтеза станет возможной в конвективной зоне. Ненадолго. «Жидкий огонь» способен расширяться при нагреве. Выделение энергии в «мантии» звезды приведёт к тому, что её размеры увеличатся в сотни раз, давление упадёт и синтез прекратится. Солнце превратится в красный гигант светимостью в 3-5 тысяч раз выше современной. Затем в ядре вспыхнет гелий, и резко возросший поток излучения вытолкнет раздувшуюся газовую оболочку за пределы гравитационной ямы.
Меркурий и Венера будут поглощены фотосферой Солнца. Уран и Нептун покинут теряющее гравитационную хватку светило. Но Земля, перейдя на орбиту с вдвое большим радиусом, вероятно, уцелеет. Агония звезды продлится ещё 100 миллионов лет — после чего догорит и гелий. Звезда превратится в белый карлик — крошечный шар из углерода и кислорода, заливающий руины солнечной системы яростными потоками рентгеновского излучения.
Дальнейший синтез станет невозможным. Ведь чем тяжелее элемент, тем больше электрический заряд ядер и выше силы кулоновского отталкивания. Превращение белого карлика в чёрный — холодный, не излучающий, — займёт ещё четыре миллиарда лет.